Development of support vector regression identification model for prediction of dam structural behaviour

نویسندگان

  • Vesna Ranković
  • Nenad Grujović
  • Dejan Divac
  • Nikola Milivojević
چکیده

The paper presents the application of support vector regression (SVR) to accurate forecasting of the tangential displacement of a concrete dam. The SVR nonlinear autoregressive model with exogenous inputs (NARX) was developed and tested using experimental data collected during fourteen years. A total of 573 data were used for training of the SVR model whereas the remaining 156 data were used to test the created model. Performance of a SVR model depends on a proper setting of parameters. The SVR parameters, the kernel function, the regularization parameter and the tube size of e-insensitive loss function are specified carefully by the trail-and-error method. Efficiency of the SVR model is measured using the Pearson correlation coefficient (r), the mean absolute error (MAE) and the mean square error (MSE). Comparison of the values predicted by the SVR-based NARX model with the experimental data indicates that SVR identification model provides accurate results. 2014 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Support vector regression for prediction of gas reservoirs permeability

Reservoir permeability is a critical parameter for characterization of the hydrocarbon reservoirs. In fact, determination of permeability is a crucial task in reserve estimation, production and development. Traditional methods for permeability prediction are well log and core data analysis which are very expensive and time-consuming. Well log data is an alternative approach for prediction of pe...

متن کامل

The Porosity Prediction of One of Iran South Oil Field Carbonate Reservoirs Using Support Vector Regression

Porosity is considered as an important petrophysical parameter in characterizing reservoirs, calculating in-situ oil reserves, and production evaluation. Nowadays, using intelligent techniques has become a popular method for porosity estimation. Support vector machine (SVM) a new intelligent method with a great generalization potential of modeling non-linear relationships has been introduced fo...

متن کامل

Structural health monitoring of concrete dams using least squares support vector machines

This study presents a least squares support vector machine (LSSVM) based displacement prediction model for health monitoring of concrete dams. LSSVM is a novel machine learning technique. The model can produce similar good generalization performance and learns faster than the basic support vector machines in engineering problems. The advantages such as high prediction accuracy, fast training sp...

متن کامل

PREDICTION OF EARTHQUAKE INDUCED DISPLACEMENTS OF SLOPES USING HYBRID SUPPORT VECTOR REGRESSION WITH PARTICLE SWARM OPTIMIZATION

Displacements induced by earthquake can be very large and result in severe damage to earth and earth supported structures including embankment dams, road embankments, excavations and retaining walls. It is important, therefore, to be able to predict such displacements. In this paper, a new approach to prediction of earthquake induced displacements of slopes (EIDS) using hybrid support vector re...

متن کامل

Ensemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search

In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015